Q	Question		Answers		Guidance	
1	(a)		moment = force × perpendicular distance from point / pivot The term perpendicular to be included and spelled correctly to gain the B1 mark	B1	Must use tick or cross on Scoris to show if the mark is awarded	
	(b)		Net force = 0	B1	Not : 'All forces are equal' or 'forces are balanced' or 'total forces up = total forces down'	
			Net moment / torque = 0	B1	Allow : 'sum of clockwise moments = sum of anticlockwise moments'	
	(c)	(i)	The point where the weight (appears) to act	B1	Not: 'The point where gravity acts' or 'point where mass acts/is concentrated'	
		(ii)	moment = $(0.150 \times 18) + (0.460 \times 30)$ moment = $16.5 (N m)$	C1 A1	Allow: 2 sf answer of 17 N	
		(iii)	1 Same / equal to 16.5 (N m) / equal to clockwise moment 2 (perpendicular) distance between elbow and (the line of action of) F decreases or (the vertical force) $F\cos\theta$ is the same or $F\cos\theta=412.5$ or $F\propto\frac{1}{\cos\theta}$ Hence the force increases	B1 M1	Possible ecf	
			Total	9		

Q	uestic	on	Answers	Marks	Guidance
2	(a)		mass = $\frac{590}{9.8(1)}$ (= 60 kg)	B1	Allow : weight = $60 \times 9.8(1)$ Allow : $60 \times 9.8(1) = 588$ (N) or $60 \times 9.8(1) = 590$ (N)
	(b)		net force = 60 × 0.50 (= 30 N)		
			R = 590 + 30	C1 A1	Allows 4 mork for (500 - 20 - 560 (N))
			R = 620 (N)	AI	Allow : 1 mark for '590 – 30 = 560 (N)'
	(c)		resultant force = 0 / ' $a = 0$ and $F = ma = 0$ '	B1	Not : Acceleration = 0 or 'forces are balanced'
	(d)		weight > R (for deceleration) / $R = 590 - 60a$ / $R = mg - ma$ Hence R decreases	M1 A1	Allow: W or mg for 'weight'
			Total	6	

3	Expected Answers	Marks	Additional Guidance
a	kinetic energy = $\frac{1}{2} \times \text{mass} \times \text{speed}^2$	B1	Allow KE = $\frac{1}{2} mv^2$, where $m = \text{mass and } v = \text{speed}$ Allow velocity instead of speed Not : KE = $\frac{1}{2} mv^2$ on its own
b(i)	initial KE = $\frac{1}{2} \times 3.0 \times 10^{-2} \times 200^{2}$ (= 600 J) final KE = $\frac{1}{2} \times 3.0 \times 10^{-2} \times 50^{2}$ (= 37.5 J) Loss in KE = 600 – 37.5 Loss in KE = 562.5 (J) \approx 560 (J)	C1 C1	Special case : 1 mark for 'KE = $\frac{1}{2} m \underline{v}^2$ loss in KE = ($\frac{1}{2} \times 3.0 \times 10^{-2} \times 200 - \frac{1}{2} \times 3.0 \times 10^{-2} \times 50 = $) 2.25 (J)' Note: No marks for 337.5 (J) when Δv used in the KE equation ($\frac{1}{2} \times 3.0 \times 10^{-2} \times 150^2 = 337.5$ J)
b(ii)	work done = (loss in) KE / $a = (v^2 - u^2)/2s$ $F \times 1.5 \times 10^{-2} = 562.5$ / $a = (-) 1.25 \times 10^6$ force = 3.75×10^4 (N)	C1 A1	Possible ecf from (b)(i) Allow : A 2 sf answer of either 3.8×10^4 (N) or 3.7×10^4 (N)
	Total	6	

4	Expected Answers	Marks	Additional Guidance
a	incorrect	M1	In question 5, use tick or cross on Scoris to show if the mark is awarded
	Mass (of the particle) increases (as it approaches speed of light)	A1	Not: mass changes
b	correct	M1	
	KE is changed into (G)PE or (G)PE is changed into KE or change in KE = change in (G)PE (AW)	A1	Note : This mark is for stating the transfer of energy between kinetic and (gravitational) potential
С	incorrect	M1	Allow alternative response: incorrect M1
	Weight is equal to drag / air resistance / friction (and not acceleration of free fall)	A1	Acceleration and weight are not the same quantities (AW) A1
d	incorrect	M1	
	The technique is trilateration The term trilateration to be included and spelled correctly to gain the A1 mark	A1	Note 1 mark if 'trilateration' is misspelled but candidate has mentioned that the statement is incorrect
	Total	8	

5	Expected Answers	Marks	Additional Guidance
a	A pair of equal and opposite forces (with their lines of action separated by a distance) The term opposite to be included and spelled correctly to gain mark	B1	Must use tick or cross on Scoris to show if the mark is awarded No mark can be scored if there is no reference 'opposite'. (Allow 'opposing')
b(i)	moment = force × perpendicular distance from pivot / axis / point	B1	
b(ii)	(clockwise moment =) 20×0.60 and (anticlockwise moments =) $10 \times 0.20 + 30$ $\times 0.30$	M1	Allow a correct moments equation involving all three forces
	(Not in equilibrium because) clockwise moment ≠ anticlockwise moment / clockwise moment > anticlockwise moment / 12 (Nm) > 11 (Nm) / 12 (Nm) ≠ 11 (Nm)	A1	
	Total	4	

Question		Expected Answers	Marks	Additional Guidance
6 (a)		W = mg weight = 1.50×9.81 = 14.72 (N) or 14. 7 (N) or 15 (N)	B1	Allow : Use of 9.8 (m s ⁻²) Allow : Bald 15 (N); but not '1.50 × 10 = 15(N)'
(b)	(i)	Net / resultant force (on B) is less / (net) force (on B) is less than its weight / there is tension (in the string) / there is a vertical / upward / opposing force (on B)	B1	Note: Must have reference to force
	(ii)	$s = ut + \frac{1}{2}at^{2} \text{ and } u = 0$ $1.40 = \frac{1}{2} \times 1.09 \times t^{2}$ $t = 1.60 \text{ (s)}$ $v^{2} = 2 \times 1.09 \times 1.40 \qquad / \qquad v = 0 + 1.09 \times 1.60$	C1 C1 A1	Allow: 2 marks for 1.75/1.09' if answer from (iii) is used Allow: 2 sf answer Allow: 2 marks if 2.80 m is used; time = 2.27 (s) Possible ecf
		$v = 1.75 \text{ (m s}^{-1})$ $v = 1.74 \text{ (m s}^{-1})$	A1	Allow : 1.7 or 1.8 (m s ⁻¹)
	(iv)	change in velocity = 2.47 + 1.50 (= 3.97 m s ⁻¹) acceleration = $\frac{3.97}{0.030}$ acceleration = 132 (m s ⁻²)	C1 A1	Ignore sign for change in velocity Allow: 130 (m s ⁻²) Special case: acceleration = $\frac{2.47 - 1.50}{0.030}$ = 32.3 or 32 (m s ⁻²) scores 1 mark
		Total	9	

C	Question		Expected Answers	Marks	Additional Guidance
7	(a)		mass = $\underline{140 \times 3.0}$ (= 420 kg)	B1	Allow: $\frac{420}{3.0} = 140$ (reverse argument)
	(b)	(i)	total mass = $500 + 560 + 420$ (= 1480 kg) total weight = $1480 \times 9.8(1)$ / total weight = 14520 (N) net force = 1480×1.8 / net force = 2664 (N) tension = $14520 + 2664$ tension = $1.7(2) \times 10^4$ (N)	C1 C1 C1 C1 A0	Note: Omitting one of the masses – can score maximum of 3 Omitting two masses – can score maximum of 2 Examples: 3 marks if mass of cable is omitted tension = $1908 + 10400 = 1.23 \times 10^4$ (N) 2 marks if mass of cable and people are omitted tension = $900 + 4905 = 5.8 \times 10^3$ (N) Note: 4 marks for 'tension = $(m(g + a) =) 1480 \times (9.81 + 1.8)$ '
		(ii)	stress = $\frac{1.72 \times 10^4}{3.8 \times 10^{-4}}$ / stress = $\frac{(b)(i)}{3.8 \times 10^{-4}}$ stress = $4.5(3) \times 10^7$ (Pa)	C1 A1	Possible ecf from (i) Note: A tension of 1.7×10^4 (N) gives an answer of $4.4(7) \times 10^7$ (Pa)
			Total	7	